Exploiting Negative Curvature in Deterministic and Stochastic Optimization

نویسندگان

  • Frank E. Curtis
  • Daniel P. Robinson
چکیده

This paper addresses the question of whether it can be beneficial for an optimization algorithm to follow directions of negative curvature. Although some prior work has established convergence results for algorithms that integrate both descent and negative curvature directions, there has not yet been numerical evidence showing that such methods offer significant performance improvements. In this paper, we present new frameworks for combining descent and negative curvature directions: alternating two-step approaches and dynamic step approaches. A unique aspect of each of our frameworks is that fixed stepsizes can be used (rather than line searches or trust regions), which makes the methods viable for both deterministic and stochastic settings. For deterministic problems, we show that our dynamic framework yields significant gains in performance (in terms of lower objective function values in a fixed number of iterations) compared to a gradient descent method. We also show that while the gains offered in a stochastic setting might be more modest, they can be notable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Probability Function on the Performance of Stochastic Programming

Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...

متن کامل

Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models

The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...

متن کامل

Decision making in forest management with consideration of stochastic prices

  The optimal harvesting policy is calculated as a function of the entering stock, the price state, the harvesting cost, and the rate of interest in the capital market. In order to determine the optimal harvest schedule, the growth function and stumpage price process are estimated for the Swedish mixed species forests. The stumpage price is assumed to follow a stochastic Markov process. A stoch...

متن کامل

Operating Room Scheduling in Teaching Hospitals: A Novel Stochastic Optimization Model

Background and Objectives: Operating room (OR) scheduling is key to optimal operating room productivity. The significant uncertainty associated with surgery duration renders scheduling of surgical operation a challenging task. This paper proposes a novel computational stochastic model to optimize scheduling of surgeries with uncertain durations. The model considers various surgical operation co...

متن کامل

Optimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment

In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017